Prime Factors of Conjugacy-Class Lengths and Irreducible Character-Degrees in Finite Soluble Groups
نویسندگان
چکیده
منابع مشابه
Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups
Let $G$ be a finite group. We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$. In this paper we characterize solvable groups $G$ in which the derived covering number is finite.
متن کاملPrime Divisors of Irreducible Character Degrees
Let G be a finite group. We denote by ρ(G) the set of primes which divide some character degrees of G and by σ(G) the largest number of distinct primes which divide a single character degree of G. We show that |ρ(G)| ≤ 2σ(G) + 1 when G is an almost simple group. For arbitrary finite groups G, we show that |ρ(G)| ≤ 2σ(G) + 1 provided that σ(G) ≤ 2.
متن کاملFinite p-groups with few non-linear irreducible character kernels
Abstract. In this paper, we classify all of the finite p-groups with at most three non linear irreducible character kernels.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1995
ISSN: 0021-8693
DOI: 10.1006/jabr.1995.1150